Asymptotic variance of random digital search trees
نویسندگان
چکیده
Asymptotics of the variances of many cost measures in random digital search trees are often notoriously messy and involved to obtain. A new approach is proposed to facilitate such an analysis for several shape parameters on random symmetric digital search trees. Our approach starts from a more careful normalization at the level of Poisson generating functions, which then provides an asymptotically equivalent approximation to the variance in question. Several new ingredients are also introduced such as a combined use of Laplace and Mellin transforms and a simple, mechanical technique for justifying the analytic de-Poissonization procedures involved. The methodology we develop can be easily adapted to many other problems with an underlying binomial distribution. In particular, the less expected and somewhat surprising n.log n/2-variance for certain notions of total path-length is also clarified.
منابع مشابه
Probabilistic analysis of the asymmetric digital search trees
In this paper, by applying three functional operators the previous results on the (Poisson) variance of the external profile in digital search trees will be improved. We study the profile built over $n$ binary strings generated by a memoryless source with unequal probabilities of symbols and use a combinatorial approach for studying the Poissonized variance, since the probability distribution o...
متن کاملExternal Profile of Symmetric Digital Search Trees
The external profile is among the first examined shape parameters of digital search trees in connection with the performance of unsuccessful search of a random query in the early 1970s. However, finer and important properties beyond the mean such as the variance and the limit law have remained unknown. In this extended abstract, we describe the first results for the asymptotic variance and the ...
متن کاملNode Profiles of Symmetric Digital Search Trees
We give a detailed analysis in distribution of the profiles of random symmetric digital search trees, which are in close connection with the performance of the search complexity of random queries in such trees. While the expected profiles have been analyzed for several decades, the analysis of the variance turns out to be very difficult and challenging, and requires the combination of many new ...
متن کاملAsymptotic variance of random symmetric digital search trees
Asymptotics of the variances of many cost measures in random digital search trees are often notoriously messy and involved to obtain. A new approach is proposed to facilitate such an analysis for several shape parameters on random symmetric digital search trees. Our approach starts from a more careful normalization at the level of Poisson generating functions, which then provides an asymptotica...
متن کاملThe Wiener Index of Random Digital Trees
The Wiener index has been studied for simply generated random trees, non-plane unlabeled random trees and a huge subclass of random grid trees containing random binary search trees, random medianof-(2k+ 1) search trees, random m-ary search trees, random quadtrees, random simplex trees, etc. An important class of random grid trees for which the Wiener index was not studied so far are random digi...
متن کامل